Examination Control Division

2080 Chaitra

Exam.	R	Regular	
Level	BE	Full Marks	80
Programme	BEL, BEI, BEX, BCT, BGE	Pass Marks	32
Year / Part	II / II	Time	3 hrs.

Subject: - Applied Mathematics (SH 551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

[5]

- 1. Define harmonic function of a complex variable. Show that $u(x, y) = y^3 3x^2y$ is harmonic and find its corresponding analytic function.
- 2. Find the linear transformation which maps the points z = 2, i, -2 into the points w = 1, i, -1.
- 3. Evaluate $\int_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where C: |z| = 3 by using Cauchy's integral formula. [5]
- 4. Obtain the Laurent's series expansion of function $f(z) = \frac{z^2 1}{(z+2)(z+3)}$ in the region 2 < |z| < 3.
- 5. Define zeros and poles of order m for function of a complex variable. Find poles and residues of $f(z) = \frac{z(z-2)}{(z+1)^2(z^2+1)}$ [5]
- 6. Evaluate integral $\int_0^{2\pi} \frac{1}{2+\cos\theta} d\theta$ by contour integration in the complex plane. [5]
- 7. Find the Z-transform of; $(i)t^2e^{-at}$, $t \ge 0$ (ii) $\sin h \, k\theta$, $k \ge 0$ [2.5+2.5]
- 8. Obtain the Z-transform of $(1 e^{-at}), t \ge 0$ and hence evaluate $x(\infty)$ by using the final value theorem. [5]
- 9. Find the inverse Z-transform of function $X(z) = \frac{z^2}{(z+1)(z-1)^2}$ [5]
- 10. Solve the difference equation $x(k+2) + 5x(k+1) + 6x(k) = 2^k$ given that x(0) = 0, x(1) = 1. [5]
- 11. Solve the one-dimensional wave equation for a tightly stretched string of length ℓ fixed at both ends if the initial deflection is $u(x, 0) = \ell x x^2$ and the initial velocity is zero. [10]
- 12. Derive one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ and find it's all possible solutions. [10]
- 13. Find Fourier cosine integral of $f(x) = e^{-x}$ and hence show that $\int_0^\infty \frac{\cos \omega x}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x}$. [5]
- 14. Find the Fourier transform of $f(x) = \begin{cases} 1 & for \ |x| < 1 \\ 0 & for \ |x| > 1 \end{cases}$ and then evaluate $\int_0^\infty \frac{\sin x}{x} dx$ [5]

Examination Control Division

2079 Chaitra

Exam.	Regular		
Level	BE	Full Marks	80
Programme	BEL, BEI, BEX BCT, BGE	Pass Marks	32
Year / Part	II / II	Time	3 hrs.

Subject: - Applied Mathematics (SH 551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.

1. Define harmonic function. Determine the analytical function

$$f(z) = u + iv \text{ if } u = 3x^2y - y^3.$$
 [1+4]

- 2. Find the linear fractional transformations that maps z = 0, -i, 2i into the points $w = 5i, \infty, -i/3$ respectively. [5]
- 3. State cauchy's integral theorem. Apply cauchy's integral formula to evaluate

$$\int_{c} \frac{e^{z}}{(z-1)(z-3)} dz \text{ where } C: |z| = 2.$$
 [1+4]

4. Expand the laurent's series of the function

$$f(z) = \frac{1}{z^2 - 3z + 2} \text{ in the region } |< |z| < 2.$$
 [5]

- 5. Evaluate $\int_C \frac{2z-1}{z(z+1)(z-3)}$ dz where C is the circle |z|=2 by residue method. [5]
- 6. Evaluate $\int_0^{2\pi} \frac{2d\theta}{2+\cos\theta}$ by contour integration. [5]
- 7. Find the z-transform of a^k for $k \ge 0$, and hence obtain the z-transform of $a^k \sin k\theta$. [2+3]
- 8. State and prove initial value theorem. [5]
- 9. Find the inverse Z transform of $\frac{Z}{(z-1)^2(z-2)}$ by inversion integral method. [5]
- [5] 10. Solve the difference equation x(k+2) - 4x(k+1) + 4x(k) = 0 with given conditions x(0) = 0, x(1) = 1.

11. Derive one dimensional wave equation and find its all possible solutions. [10]

12. Solve the one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial t^2}$ with boundry and initial condition

$$u(0,t) = 0, u(\int t, t) = 0 \text{ and } u(x,0) = \frac{100x}{t}$$
 [10]

13. Find that the Fourier Cosine integral representation of [5] $f(x) = e^{-kx} (x > 0, k > 0)$ and Hence show that $\int_0^\infty \frac{\cos \omega x}{k^2 + \omega^2} d\omega = \frac{\pi}{2k} e^{-kx}, x > 0, k > 0.$

14. Find the Fourier transform of the function e^{-x^2} , also verify that convolution theorem for the functions $f(x) = e^{-x^2}$ and $g(x) = e^{-x^2}$ [5]

Examination Control Division

2078 Chaitra

Exam.	Regular/		
Level	BE	Full Marks	80
Programme	BEL,BEX,BCT BEI,BGE	Pass Marks	32
Year / Part	II / II	Time	3 hrs

Subject: - Applied Mathematics (SH 551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

- 1. Define an analytic function f(z) of complex variable z at a point. If f(z) = u(x,y) + i v(x,y) is analytic, show that $u_x = v_y$ and $u_y = -v_x$.
- 2. Define conformal mapping. Find the linear transformation which maps the points $z=0,1,\infty$ in to the points w=-3,-1,1 respectively. [5]
- 3. State and proof Cauchy's Integral theorem. [5]
- 4. Obtain the Taylor's series expansion of the complex function $f(z) = \frac{z+1}{(z-3(z-4))}$ about the center z = 2 up to four term. [5]
- 5. State Cauchy residue theorem. Apply it to evaluate $\int_{c} \frac{4-3z}{z(z-1)(z-2)} dz$ where C is the circle $|z| = \frac{3}{2}$.
- 6. Evaluate integrals $\int_0^{\pi} \frac{1}{3+2\cos\theta} d\theta$ by contour integration. [5]
- 7. If x(t) = 0 for t < 0, Z[x(t)] = X(z) for $t \ge 0$, then prove that $Z[e^{-at} x(t)] = X(ze^{aT})$. [5]
- 8. Obtain the Z- transform of (i) te^{-at} (ii) sin at [2.5+2.5]
- 9. Obtain the inverse Z- transform of $X(z) = \frac{(1 e^{-aT})z}{(z-1)(z-e^{-aT})}$ where T is the sampling period. [5]
- 10. Solve the difference equation $y_{n+2} 4y_{n+1} + 4y_n = 0$ with given condition $y_0 = 0$, $y_1 = 1$. [5]
- 11. A tightly stretched string with fixed ends x = 0 and $x = \ell$ is initially in position given by $u(x,0) = u_0 \sin^3 \frac{\pi x}{\ell}$ If it is released from rest in this position, find the displacement at any time t at any distance x from one end. [10]
- 12. Derive one dimensional heat equation and solve it completely.
- 13. Obtain the fourier sine and cosine integral of f(x) = x for 0 < x < a, = 0 for x > a.
- 14. Find the fourier cosine transform of $f(x) = e^{-x}$, x > 0 and hence parseval's identity, show

that
$$\int_0^\infty \frac{1}{(1+x^2)^2} dx = \frac{\pi}{4}$$
. [5]

Examination Control Division

2077 Chaitra

Exam.	Regular		
Level	BE	Full Marks	80
Programme	BEL, BEX, BCT, BEI, BGE	Pass Marks	32
Year / Part	II / II	Time	3 hrs.

Subject: - Applied Mathematics (SH 551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.
- 1. a) State Cauchy-Riemann equation in polar form. Prove that f(z) = |z| is not an analytic function.
 - b) Find the linear transformation which maps the points $z = 0, 1, \infty$ into the points w = -3, -1, 1 respectively. Find also fixed point of the transformation. [4+1]
- 2. a) State and prove Cauchy's Integral Formula. [1+4]
 - b) Find the Laurent's series of $f(x) = \frac{z^2 1}{(z+2)(z+3)}$ in the region 2 < |z| < 3. [5]
- 3. a) State Cauchy Residue theorem and hence evaluate the integral $\int_{C} \frac{z-1}{(z+1)^2(z-2)} dz$ where C: |z-i| = 2.
 - b) Using counter Integration, evaluate $\int_0^{2\pi} \frac{1}{2 + \cos \theta} d\theta$ in the complex plane. [5]
- 4. a) State and prove initial value theorem of z-transform. [5]
 - b) Find the z-transform of the following sequence for $t \ge 0$. [2.5+2.5]
 - (i) te^{-at} (ii) sinat
- 5. a) Find the inverse z-transform of the function $\frac{2z^3 + z}{(1-2)^2(z-1)}$. [5]
 - b) Solve the difference equation x(k+2) 4x(k+1) + 4x(k) = 0 with conditions x(0) = 1, x(1) = 0. [5]
- 6. Derive one dimensional heat equation and solve it completely. [5+5]
- 7. A string is stretched and fastened to two points apart. Motion is started by displacing the string in the form $u(n,0) = u_0 \sin \frac{\pi x}{l}$ from which it is released at time t=0. Show that the displacement at any point at a distance x from one end at a time t is given by $u(x,t) = u_0 \sin \frac{\pi x}{l} \cos \frac{\pi ct}{l}$. [10]
- 8. a) Define the complex form of Fourier integral of a given function with usual notation. Find the Fourier integral representation of the function $f(x) = \begin{pmatrix} 1 & if & |x| < 1 \\ 0 & if & |x| > 1 \end{pmatrix}$ and hence evaluate $\int_0^\infty \frac{\sin w}{w} dw$. [1+3+1]
 - b) Find the Fourier sine transformation of $f(x)=e^{-|x|}$ and hence evaluate the integral $\int_0^s \frac{s \sin sx}{s^2 + 1} ds.$ [5]

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

Examination Control Division

2076 Baisakh

Exam.		Back	
Level	BE	Full Marks	80
Programme	BEL, BEX, BCT, BGE	Pass Marks	32
Year / Part	II / II	Time	3 hrs.

Subject: - Applied Mathematics (SH 551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.
- 1. Obtain polar form Cauchy-Riemann equations for function of complex variable.
- 2. Find the linear fractional transformation which maps the points $z=0,1,\infty$ into the points w=-3,-1,1 respectively.
- 3. Define Complex integration. How does it differ from real integration? Derive Cauchy integral formula for function f(z). [1+1+3]
- 4. Define Laurent's Series for the function of complex variable. Obtain Taylor's series for function

$$f(z) = \frac{z}{z^2 + 4}$$
 about z=i

- 5. State Cauchy residue theorem. Apply it to evaluate $\oint \tan z dz$, where c is the region |z|=2.
- 6. Evaluate integral $\int_0^{2\pi} \frac{d\theta}{a + \sin \theta}$; a>1 by contour integration in complex plane.
- 7. Obtain z-transform of sin ωt and hence obtain z-transform of $e^{at}\sin \omega t$.
- 8. Obtain the inverse z-transform of $X(z) = \frac{z^2}{(z-1)^2(z-e^{-aT})}$
- 9. State and prove shifting to the right theorem for z-transform.
- 10. Solve the difference equation:

x(k+2)-x(k+1)+0.25x(k)=u(k) where x(0)=1 and x(1)=2 and u(k) is a unit step function; by z-transform method,

11. Find Fourier integral of the function

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ e^{-x} & \text{if } x < 0 \end{cases}$$

- 12. Find the Fourier Sine transform of e^{-x} , $x \ge 0$ and hence show that $\int_0^\infty \frac{x^2}{(1+x^2)^2} dx = \frac{\pi}{4}$
- 13. Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with the given boundary conditions; u(0,t)=0, $u(\pi,t)=0$, u(x,0)=0 and $\left(\frac{\partial u}{\partial t}\right)_{x=0}=3(Lx-x^2)$.
- 14. Derive one dimensional heat equation and solve it completely.

[10]

[5]

[5]

[1+4]

[1+4]

[5]

[5]

[5]

[5]

[5]

[5]

[3+2]

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

Examination Control Division

2076 Bhadra

Exam.	m Re	egular 从	, i , i , i
Level	BE	Full Marks	80
Programme _.	BEL, BEX, BCT, BGE	Pass Marks	32
Year / Part	II / II	Time	3 hrs.

[5]

[1+4]

[5]

[5]

[3+2]

[5]

[5]

[2]

[3]

[5]

[5]

[10]

Subject: - Applied Mathematics (SH 551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) If $u = (x-1)^3 3xy^2 + 3y^2$, then find v and construct an analytic function f(z) = u + iv.
 - b) Define conformal mapping. Find mobius transformation which maps the points z = 0, $1, \infty$ into the points w = -3, -1, 1 respectively.
- 2. a) Define Complex integral. Using Cauchy's integral formula evaluate, $\int_{C} \frac{\sin z}{z^{6}} dz \text{ where } C: |z| = 1.$
 - b) Obtain the Laurrent's Series expansion of $f(z) = \frac{z^2 1}{(z + 2)(z + 3)}$ in the region 2 < |z| < 3
- 3. a) Evaluate $\int_0^{2\pi} \frac{d\theta}{1 + \frac{1}{2}\cos\theta}$, applying contour integration in the complex plane.
 - b) Define the pole of order m of a function of a complex variable. Find the residue of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ at its poles. [1+4]
- 4. a) Obtain the Fourier integral of the function $f(x) = \begin{cases} 1, & \text{for } |x| < 1, \\ 0, & \text{for } |x| > 1 \end{cases}$

and hence evaluate $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$

- b) State and prove the convolution theorem for Fourier transform.
- 5. a) Find the z-transform of $x(t) = \sin \omega t$, for $t \ge 0$.
 - b) Find the inverse z-transform of:
 - (i) $\frac{z^2}{z^2 3z + 2}$ by partial fraction method
 - (ii) $\frac{z}{(z+2)^2(z-1)}$ by inversion integral method
- 6. a) State and prove shifting to the right theorem for z-transform.
 - b) Solve the difference equation x(k+2)+3x(k+1)+2x(k)=0, with the conditions x(0)=0, x(1)=1
- 7. Solve the wave equation for a tightly stretched string of length L fixed at both ends if the initial deflection is $u(x, 0) = Lx x^2$ and the initial velocity is zero.
- 8. Change the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ into polar form. [10]

Examination Control Division

2075 Bhadra

Exam.	${f R}$	egular	
Level	BE	Full Marks	80
Programme	BEL,BEX, BCT, BGE	Pass Marks	32
Year / Part	II / II	Time	3 hrs.

Subject: - Applied Mathematics (SH551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Define harmonic function of complex variable. Show that $u(x,y) = y^3 3x^2y$ is harmonic and find corresponding analytic function. [1+4]
- 2. Define conformal mapping for function of complex variable. Show that function of complex variable w = iz is transformed through an angle $\frac{\pi}{2}$ in w-plane. [1+4]
- 3. State and prove Cauchy's integral theorem. [5]
- 4. Define Laurent's Series for the function of complex variable. Find Laurent's series of the function $f(z) = \frac{z}{(z+2)(z+3)}$ in the region 2 < |z| < 3. [1+4]
- 5. Define pole of order m for function of complex variable. Find residues of $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+1)}$ at its poles. [1+4]
- 6. Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$ by contour integration in the complex plane. [5]
- 7. Find the Z-transform of: [3+2]
 - i) t^2e^{at}
 - ii) e^{-at} cos wt
- 8. Find the inverse Z-transform of: [2.5+2.5]
 - i) $X(z) = \frac{2z^2 5z}{(z 2)(z 3)}$ (By partial fraction method)
 - ii) $X(z) = \frac{z^{-2}}{(1-z^{-1})^3}$ (By inversion integral method)
- State final value theorem for Z-transform. Obtain Z-transform of (1-e^{-at}); a>0 and hence evaluate x(∞) by using final value theorem. [1+4]
- 10. Solve the difference equation: [5] x(k+2)-3x(k+1)+2x(k)=0; given that x(0)=0 and x(1)=1 by using z-transform
- method.
- 11. Find the Fourier integral of the function: [5]

$$f(x) = \begin{cases} 1, & \text{for } 0 < x < \pi \\ 0, & \text{for } x > \pi \end{cases}$$

- 12. Find the Fourier transform of e^{-x^2} . Also verify the convolution theorem for $f(x) = e^{-x^2}$ and $g(x) = e^{-x^2}$ [5]
- 13. Derive one dimensional wave equation and solve it completely. [10]
- 14. Solve completely the Laplace equation $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = 0$ under the conditions: [10]

$$u(0,y) = u(1,y) = u(x,o) = 0, u(x,\infty) = \sin\left(\frac{n\pi x}{1}\right)$$

Examination Control Division

2075 Baisakh

Exam.	Back :		
Level	BE	Full Marks	80
Programme	BGE, BEL, BEX, BCT	Pass Marks	32
Year / Part	II / II	Time	3 hrs.

Subject: - Applied Mathematics (SH551)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Define harmonic function. Is V = arg(z) is harmonic? If yes, find a corresponding harmonic conjugate. [1+1+3]
 - b) Define conformal mapping. Find the bilinear transformation which maps the points $z = 0, 1, \infty$ into the points w = -3, -1, 1 respectively. [1+4]
- 2. a) Distinguish between Cauchy integral Theorem and Cauchy integral formula. Using Cauchy integral formula evaluate $\int_{c} \frac{e^{z}}{(z+1)(z-2)} dz$ where C is the circle |z-1|=3. [1+4]
 - b) State and Prove Taylor's series for function of complex variable. [5]
- 3. a) Define an isolated pole. Using Cauchy's residue theorem evaluate $\int_{c}^{c} \frac{z-1}{(z+1)^{2}(z-2)} dz$ where C is the circle |z-i|=2. [5]
 - b) Evaluate the integral by contour integration: [5]

$$\int_{-\infty}^{\infty} \frac{x^2}{(1+x^2)(x^2+4)} dx$$

- a) Obtain the z-transform of (1-e^{-at}), a > 0 and hence evaluate x(∞) by using final value theorem.
 - b) Obtain the inverse z-transform of:

$$X(z) = \frac{2z^3 + z}{(z-2)^2(z-1)}$$
 by using partial fraction method. [5]

- 5. a) Define z-transform of function f(t). Find the z-transform of following sequences: [1+2+2]
 - (i) $f(k) = \begin{cases} 15,10,7,4,1,-1,3,6 \\ \uparrow \end{cases}$
 - (ii) $f(k) = \begin{cases} 5^k & ; k < 0 \\ 2^k & ; k \ge 0 \end{cases}$
- b) Solve the difference equation by the application of z-transform:

$$x(k+2)+3x(k+1)+2x(k)=0$$
 with conditions $x(0)=0$, $x(1)=1$.

- 6. a) A tightly stretched string with fixed ends at x = 0 and x = 1 is initially at rest in its equilibrium position. Find the deflection u(x, t) if it is set vibrating by giving to each of its points a velocity $3(lx-x^2)$.
- [10]

b) Derive two dimensional heat equation.

- [10]
- 7. a) Obtain the Fourier sine integral representation of e-xcosx and hence show that

$$\int_0^\infty \frac{\omega^3 \sin \omega x}{\omega^4 + 4} d\omega = \frac{\pi}{2} e^{-x} \cos x, \quad x > 0.$$
 [5]

b) Find the Fourier Cosine transform of $f(x) = e^{-x}$, x > 0 and hence by Parseval's identity, show that

$$\int_0^\infty \frac{1}{\left(1+x^2\right)^2} dx = \frac{\pi}{4} .$$

Examination Control Division

2074 Bhadra

Exam.		Regular	80
Level	BE	Full Marks	A STATE OF THE STA
Programme	BGE, BEL, BEX, BCT	Pass Marks	32 3 brs.
Year / Part	11/11	Time	3 1918.

Subject: - Applied Mathematics (SH551)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Define an analytic function for a function of complex variable. Derive Cauchy [1+4] Riemann equations in Cartesian form.
 - b) Define linear fractional mapping. Find bilinear mapping which maps the points z = 0, [1+4] 1, -1 to w = i, 2, 4.
- [5] 2. a) State and Prove Cauchy integral theorem.
 - b) Point out difference between Taylor's series and Laurent's series. Find Laurent' series [1+4] of function $f(z) = \frac{\sin z}{z^6}$, 0 < |z| < TR
- evaluate theorem 3. a) Define pole of order m. Using Cauchy's residue [1+4] $\int \cot z \, dz$; where C is |z| = 1.
 - b) Using Counter integration evaluate,
- [5] $\int_{-\infty}^{\infty} \frac{\mathrm{dx}}{(1+x^2)^2}.$
- 4. a) Find the z-transform of:
 - [2+3](ii) te-at (i) cosat
- b) State final value theorem. If x(t) = 0 for t < 0 and Z[x(t)] = X(z) for $t \ge 0$ then prove that:

$$Z[x(t+nT)] = z^{n} \left[X(z) - \sum_{k=0}^{n-1} x(kT)z^{k} \right].$$
 [1+4]

- 5. a) Obtain inverse Z-transform of $\frac{z(3z^2-6z+4)}{(z-1)^2(z-2)}$. 151
 - b) Solve the difference equation by the application of z-transform: x(k+2)-4x(k+1)+4x(k)=0; with conditions x(0)=1; x(1)=0. 151
- 6. a) Derive one dimensional wave equation and solve it completely. [5+5]
 - b) A uniform rod of length ℓ has its end maintained at a temperature 0°C and the initial temperature of the rod is:

$$u(x,0) = 3\sin\frac{\pi x}{\ell} \quad \text{for } 0 < x < \ell.$$

[10] Find the temperature u(x, t).

7. a) Find Fourier integral of the function

$$f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$$
 [5]

[5]

b) Verify the convolution theorem for Fourier transform for $f(x) = g(x) = e^{-x^2}.$

Examination Control Division

2073 Bhadra

Exam.	Regular			****
Level	BE		Full Marks	80
Programme	BEL, I BGE	BEX, BCT,	Pass Marks	32
Year / Part	11/11	24. 25. 1940 E. 25. 1929 # 2 1944 E. 1947 E. 1944 E. 1944	Time	3 hrs.

[5]

[1+4] -

[1+4]

Subject: - Applied Mathematics (SH551)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Define harmonic function of complex variable. Determine the analytical function

$$f(z) = u + iv \text{ if } u = y^3 - 3x^2y$$
 [1+4]

- b) Derive Cauchy-Reimann equations if function of complex variable f(z) = u + iv is analytic in cartesian form.
- 2. a) What do you mean by conformal mapping? Find the linear transformation which maps points $z_1 = 1, z_2 = i, z_3 = -1$ into the points $w_1 = 0, w_2 = 1, w_3 = \infty$. [1+4]
 - b) State and prove Cauchy's integral formula. [5]
- 3. a) State Taylor's theorem. Find the Laurent's series representation of the function

$$f(z) = \frac{z}{(z+1)(z+2)}$$
 in the annular region between $|z| = 1$ and $|z| = 2$. [1+4]

b) Define zero of order m of function of complex variable . Determine the poles and residue at poles of the functions $f(z) = \frac{1+z}{(z+2)(1-z)^2}$.

OK

Evaluate the real integral
$$\int_{-\infty}^{\infty} \frac{x^2}{(1+x^2)^3} dx$$
 by contour integration in the complex plane. [5]

- 4. a) Define z-transform. How does it differ from Fourier transform? Obtain z-transform of
 - (i) t^2a^t (ii) cosat [1+1+1.5+1.5]
 - b) State initial value theorem for z transform. Find the initial value x(0) and x(1) for the function.

$$X(z) = \frac{(1 - e^{T})z^{-1}}{(1 - z^{-1})(1 - e^{-T}z^{-1})}$$

- 5. a) Obtain the inverse z-transform of $X(z) = \frac{3z^3 + 2z}{(z-3)^2(z-2)}$ by using inversion integral method.
 - b) Apply method of z-transform to solve the difference equation x(k+2)-4x(k+1)+4x(k)=0; x(0)=0, x(1)=1

6. Solve completely one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the conditions: [10]

$$u(0,t) = 0, u(1,t) = 0, u(x,0) = 0 \text{ and } \left(\frac{\partial u}{\partial t}\right)_{at t = 0} = 3(1x - x^2)$$

- 7. Derive one dimensional heat equation and solve it completely. [10]
- 8. a) State convolution theorem for Fourier transform. Give its importance with suitable example. [2+3]
 - b) Find the Fourier cosine integral of the function $f(x) = e^{-kx} (x > 0, k > 0)$ and hence show that $\int_0^\infty \frac{\cos \omega x d\omega}{k^2 + \omega^2} = \frac{\pi}{2k} e^{-kx}; x > 0, k > 0$ [5]

Examination Control Division 2073 Magh

Exam.	New Back (2)	966 & Later 1	bichi di
Lavel	BE	Full Marks	
Programme	BEL, BEX, BC1	Pass Marks	32
Year / Part	11 / 11	Time	3 kgs

[5]

Subject: - Applied Mathematics (SH551)

Candidates are required to give their answers in their own words as far as practicable.

Attempt All questions.

The figures in the margin indicate Full Marks.

Assume suitable data if necessary.

- 1. a) Define analytical function of complex-variable. Determine the analytic function $f(z) = u + iv \text{ if } u = \log \sqrt{x^2 + y^2}$. [1+4]
 - b) Express Cauchy Riemann equations $U_x = V_y$ and $U_y = -V_x$ into polar form. [5]
- 2. a) Define bilinear transformation. Obtain the linear transformation which maps points $z_1 = -i$, $z_2 = 0$, $z_3 = i$ into $w_1 = -1$, $w_2 = i$, $w_3 = 1$ [1+4]
 - b) Evaluate $\int_{c} \frac{e^{2z}}{z^2 3z + 2} dz$ in the circle |z| = 3 by using Cauchy integral formula. [5]
- 3. a) State Laurent's Theorem. Obtain the Taylor's series expansion of $f(z) = \frac{1}{z^2 + 4}$ about the point z = i. [1+4]
 - b) Define residue at poles. Evaluate $\oint_{c} \frac{\sin z}{z^6} dz$, C: |z| = 1 by residue method. [1+4]

Evaluate real integral $\int_0^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta}$ d θ by contour integration in the complex plane.

- 4. a) Define Z-transform and its region of convergence. Find the Z-transform of [1+1+1.5+1.5]
 - i) t²e^{-at} ii) sinat
- b) State and prove final value theorem for Z-transform.
- 5. a) Find the inverse Z-transform of $f(z) = \frac{z-4}{(z-1)(z-2)^2}$ by partial fraction method. [5]
 - b) Use the method of Z-transform to solve the difference equation. [5] x(k+2)+2x(k+1)+3x(k)=0: x(0)=0, x(1)=2
- 6. Derive one dimensional wave equation and solve it completely. [10]
- 7. Solve completely the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ under the conditions: [10]

$$u(o, y) = u(l, y) = u(x, 0) = 0, u(x, \infty) = \sin\left(\frac{n\pi x}{l}\right)$$

- 8. a) Define Fourier transform of a function. How does it differ from Fourier series? Support your answer with suitable example. [1.5+1.5+2]
 - b) Find the Fourier Sine transform of e^{-x} , $x \ge 0$ and hence show that

$$\int_0^\infty \frac{x^2}{(1+x^2)^2} dx = \frac{\pi}{4}$$
 [5]

Examination Control Division

2072 Ashwin

Exam.	Regular		
Level	BE	Full Marks	
Programme	BEL, BEX, BCT BGE	Pass Marks	Accompanies and
Year / Part	11 / 11	Time	3 hrs.

[5]

[5]

Subject: - Applied Mathematics (SH551)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) If $u = (x-1)^3 3xy^2 + 3y^2$, determine V so that u + iv is an analytic function of x+iy. [5]
 - b) Define an analytic function. Express Cauchy Riemann equations $u_x = v_y$ and $u_y = -v_x$ in polar from. [5]
- 2. a) Find the bilinear transformation which maps points $z_1 = 1$, $z_2 = i$, $z_3 = -1$ into the points $w_1 = i$, $w_2 = -1$, $w_3 = -i$ respectively. [5]
 - b) Evaluate $\int_0^{1+i} (x^2 + iy) dz$ along the path $y = x^2$ [5]
- 3. a) Express $f(z) = \frac{1}{(z^2 3z + 2)}$ as Laurent's series in the region 1 < |z| < 2. [5]
 - b) Evalute $\int_0^{2\pi} \frac{1}{5-4\sin\theta} d\theta$ by contour integration method in complex plane. [5]
- 4. a) Find z-transform of: [5]
 - i) te-at
 - ii) sinat
 - b) State and prove final value theorem for z- transform.
- 5. a) Find the inverse z-transform of $\frac{2z^2 5z}{(z-2)(z-3)}$ by using partial fraction method. [5]
 - b) Solve difference equation $x(k+2)-3x(k+1)+2x(k)=4^k$ for x(0)=0 and x(1)=1. [5]
- 6. Derive one dimensional wave equation and obtain its solution. [10]
- 7. Solve one dimensional heat equation: [10]

 $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the conditions:

i) u is not infinite as $t \rightarrow \infty$

- ii) $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 0$ for $\mathbf{x} = 0$ and $\mathbf{x} = l$
- iii) $u(x,0) = lx x^2$ for t = 0; between x = 0 and x = l
- 8. a) Find Fourier integral representation of $f(x) = e^{-x}, x > 0$ and hence evaluate $\int_0^\infty \frac{\cos(sx)}{s^2 + 1} ds$ [5]
 - b) Find the Fourier cosine transform of $f(x) = e^{-|x|}$ and hence, by Parseval's identity, shown that $\int_0^\infty \frac{1}{(1+x^2)^2} dx = \frac{\pi}{4}$

Examination Control Division 2072 Magh

Exam.	New Back (2066)	& Later Batch)
Level	ME	Full Marks 80
Programme	All (Except B.Arch)	Fam Marks 32
Year / Part	1/11	Time 3 hrs.

Subject: - Engineering Mathematics II (SH451)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary

1. If
$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
 prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$

- 2. Find the extreme value of $x^2 + y^2 + z^2$ connected by the relation x + y + z = 3a
- 3. Evaluate: $\iint r \sin \theta \, dr \, d\theta$ over the area of the cardioid $r = a (l + \cos \theta)$ above the initial line.
- 4. Evaluate: $\int_0^a \int_0^{\sqrt{(a^2-x^2)}} y^2 \cdot \sqrt{(x^2+y^2)} dy.dx$ by changing polar coordinates.

OR

Evaluate:
$$\iiint x^{l-1}.y^{m-1}.z^{n-1}dx.dy.dz$$

Evaluate: x, y, z are all positive but
$$\left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q + \left(\frac{z}{c}\right)^r \le 1$$

- 5. Find the length of perpendicular from the point (3, -1, 11) to the line $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$.

 Also obtain the equation of the perpendicular.
- 6. Find the magnitude of the line of the shortest distance between the lines $\frac{X}{4} = \frac{Y+1}{3} = \frac{Z-2}{2}$, 5x-2y-3z+6=0, x-3y+2z-3=0
- 7. Find the centre and radius of the circle in which the sphere $x^2 + y^2 + z^2 8x + 4y + 8z 45 = 0$ is cut by the phane x 2y + 2z = 3
- 8. The plane through OX and OY include an angle α , show that their line of intersection lies on the cone $z^2(x^2 + y^2 + z^2) = x^2y^2 \tan^2 \alpha$
- 9. Solve by power series method of the differential equation y"-y=0
- 10. Express $f(x) = x^3 5x^2 + x + 2$ in terms of Legendre's polynomials.
- 11. Prove the Bessel's function: $J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} \cos x \right)$

12. If a, b, c and a, b, c are the reciprocal system of vectors then prove that

$$\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}}, \begin{bmatrix} \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \end{bmatrix} \neq 0$$

- 13. If $\vec{r} = a \cos t \vec{i} + a \sin t \vec{j} + a t \tan \alpha \vec{k}$, find $\vec{r} \frac{d\vec{r}}{dt} \frac{d^2 \vec{r}}{dt^2}$
- 14. Find the directional derivative of $\phi(x,y,z) = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of victor $\vec{i} + 2\vec{j} + 2\vec{k}$

OR

If \vec{r} be the position vector and \vec{a} is constant vector then prove that $\nabla \left(\frac{\vec{a} \times \vec{r}}{r} \right) = 0$

- 15. Determine whether the series $\sum \frac{n}{1+n\sqrt{n+1}}$ is convergent or divergent.
- 16. Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n \cdot 2^n}$

Examination Control Division

ster beriefer - ersseret		milate / Haick	
Fanite.	THE	Vull Marks	80
ANN -	ner Bex.	Pass Marks	32
Programm Vear / Part	BCT, BOL	Time	3 fara
A cost, Lat.	STANDARD STA	rapped to a first part of the state of the s	

Subject: - Applied Mathematics (SH551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. Determine the analytic function f(z) = u + iv if $u = \log \sqrt{x^2 + y^2}$.
- State and prove Cauchy's integral formula.
- 3. Find the Taylor's series of $f(z) = \frac{1}{1-z}$ about z = 3i.
- 4. Evaluate the integral: $\oint_C \frac{z^2 d^{-1}}{(z+1)(z+3)}$ where C: |z| = 4, using residue theorem.
- 5. Define conformal mapping, show that $w = \frac{az+b}{cz+d}$ is invariant to

$$\left(\frac{w - w_1}{w - w_3}\right) \times \left(\frac{w_2 - w_3}{w_2 - w_1}\right) = \left(\frac{z - z_1}{z - z_3}\right) \times \left(\frac{z_2 - z_3}{z_2 - z_1}\right)$$

- 6. Using contour integration, evaluate real integral: $\int_{-\infty}^{+\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$
- 7. Find the z-transform of $x(z) = \cosh t \sinh t$.
- 8. State and prove "final value theorem" for the z-transform.
- 9. Find the inverse z-transform of $x(z) = \frac{z}{z^2 + 7z + 10}$.
- 10. Using z-transform solve the difference equation:

$$x(K+2) + 6x(K+1) + 9x(K) = 2^{K}; x_0 = x_1 = 0.$$

- 11. Derive one-dimensional heat equation.
- 12. Solve the wave equation for a tightly stretched string of length '1' fixed at both ends if the initial deflection in $y(x, 0) = lx x^2$ and the initial velocity is zero.

13. Solve
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{2y^2} = 0$$
 under the conditions $u(0, y) = u(1, y) = u(x, 0) = 0$, $u(x, a) = \sin\left(\frac{n\pi x}{1}\right)$

- 14. Derive the wave equation (vibrating of a string).
- 15. Find the Fourier cosine transform of $f(x) = e^{-im|x|}$ and hence show that $\int_{0}^{\infty} \frac{\cos p\gamma}{\gamma^2 + \beta^2} d\gamma = \frac{\pi}{2\beta} e^{-p\beta}.$
- 16. Find the Fourier integral representation of the furction $f(x) = e^{-x}$, $x \ge 0$ with f(-x) = f(x).

 Hence evaluate $\int_0^\infty \frac{\cos(sx)}{s^2 + 1} ds$.

PRIMITE AN UNITERRITY INSTRICTE OF ENGINEERING

Examination Control Division

\$ 2071 Magh

Lam.	New Harry	THE & DEED	Materia
Level	111	Full Marks	
Programme	mi bix, mi, nor	Pan Marks	12
Year / Part	H H	Time	3 haza

Subject: - Applied Mathematics (\$11351)

- Candidates are required to give their answers in their own words as far as practicable
- Attempt All questions.
- The figures in the margin indicate Full Marks
- Assume suitable data if necessary.
- 1. a) Determine the analytic function f(z) = u + iv if $u = 3x^3y y^3$ [5]
 - b) Find the linear transformation which maps the points z = 0, 1, so into the points w = -3, -1, 1 respectively. Find also fixed points of the transformation
- [5] State and prove Cauchy's integral formula. [5]
 - b) Evaluate $\int \frac{e^{zz}}{(z-1)(z-2)} dz$ where C is the circle |z| = 3. [5]
- 3. a) Find the first four terms of the Taylor's series expansion of the complex function $f(z) = \frac{z+1}{(z-3)(z-4)}$ about the centre z=2. [5]
 - b) Evaluate $\int \frac{4-3z}{z(z-1)(z-2)} dz$ where C is the circle $|z| = \frac{3}{2}$. [5]

Evaluate $\int_0^{2\pi} \frac{1}{\cos \theta + 2} d\theta$ by contour integration in the complex plane.

- 4. Derive one dimensional heat equation $u_t = c^2 u_{xx}$ and solve it completely. [10]
- = 5. Find all possible solution of Laplace equation $u_{xx} + u_{yy} = 0$. Using this, hence solve $u_{xx} \div u_{yy} = 0$, under the conditions u(0, y) = 0, u(x, y) = 0 when $y \to \infty$ and $u(x, 0) = \sin x$. [10]
 - a) Find the z-transform of sin Kθ. Use it to find the z[a^K sin Kθ] [5]
 - b) If $z[x(K)] = \frac{2z^2 + 3z + 12}{(z-1)^4}$, find the value of x(2) and x(3).
- 7. a) Find the inverse z-transform of $x(z) = \frac{3z^3 + 2z}{(z-3)^2(z-2)}$ by using inversion integral method. [5]
 - b) Using z-transform solve the difference equation $x(K + 2) 4x(K + 1) + 4x(K) = 2^{K}$ given that x(0) = 0, x(1) = 1. [5]
- 8. a) Find the Fourier sine integral of the function $f(x) = e^{-Kx}$ and hence show that [5] $\int \frac{\lambda \sin \lambda x}{\lambda^2 + \Omega^2} d\lambda = \frac{\pi}{2} e^{-Kx}, \quad x > 0, K > 0$
 - b) Find the Fourier sine transform of e^{-x} , $x \ge 0$ and hence show that [5] $\int \frac{x \sin mx}{x^2 + 1} dx = \frac{\pi}{2} e^{-m}, \ m > 0$

THE REPORT OF THE PERSON AS PROPERTY OF THE PROPERTY OF THE PERSON AS A PROPERTY OF TH

Examination Control Division

2070 Bhadra

Exam.	Regular		
Level	BE	Full Marks	80
Programme	BEL. BEX, BCT	Pass Marks	32
Year / Part	11/11	Time	3 hrs.

[5]

151

Subject: - Applied Mathematics (SH551)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- V. The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary
- 1. Show that $u(x, y) = x^2 + 2xy y^2$ is a harmonic function and determine v(x, y) in such a way that f(z) = u(x, y) + iv(x, y) is analytic. [5]
- 2. Define complex integral. State and prove Cauchy integral formula.

OR

Obtain bilinear transformation which maps -i, o, i to -1, i, 1.

- 3. Evaluate $\int_C \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is |z| = 3 using Cauchy's integral formula. [5]
- 4. Obtain the Laurent series which represents the function $f(z) = \frac{z^2 1}{(z+2)(z+3)}$ 2 < |z| < 3. [5]
- 5. Find the Laurent series of $f(z) = \frac{1}{4+z^2}$ about the point z = i. [5]
- 6. State and prove Taylor series of a function f(z). [5]
- 7. Derive one dimensional wave equation $u_{tt} = c^2 u_{xx}$ and solve it completely. [10]
- 8. Solve one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the boundary condition $\frac{\partial u}{\partial x} = 0$ when x = 0 and x = L and initial condition u(x, 0) = x for 0 < x < L. [10]
- 9. Find Z transform of (a) te^{-at} and (b) sin at. [5]
- 10. Find the inverse z-transform (a) $\frac{z-4}{(z-1)(z-2)^2}$ (b) $\frac{z}{z^2-3z+2}$. [5]
- 11. Obtain the Z transform of $x(t) = (1 e^{-at})$, a > 0 and hence evaluate $x(\infty)$ by using final value theorem. [5]
- 12. Solve using z-transform the difference equation x(K + 2) + 2x(K + 1) + 3x(K) = 0. [5]
- 13. Find the Fourier sine transform of $f(x) = e^{-x}$, $x \ge 0$ and hence evaluate $\int_0^\infty \frac{x \sin x}{(1+x^2)} dx$. [5]
- 14. State and prove convolution theorem of Fourier transform. [5]

Examination Control Division

2070 Magh

Exam.		COLUMN TO MALESTA	
Level	111	Full Marks	80
Programme	BIL BEX.	Pass Marks	12
Year / Part	11/11	Time	A ben.

Subject: - Applied Mathematics (8H551)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Define analytic function. Show that the function $f(z) = \frac{1}{z^4}$ is analytic except z = 0 [5]
- 2. Define complex integral. Evaluate $\int_c \log z \, dz$; c : |z| = 1 [5]

OR

Obtain a bilinear transformation which maps -i, 0, i to -1, i, 1.

- 3. Evaluate $\int_0^{1+i} (x^2 + iy) dz$ along the path y = x. [5]
- 4. Find the Taylor series of $f(z) = \frac{1}{4+z^2}$ about the point z = i. [5]
- 5. Evaluate the integrals by residue theorem $\int_c \frac{1-\cos z}{z^3} dz$ [5]
- 6. State Cauchy's Residue theorem and use it to evaluate $\int_c \frac{z^2}{3+4z+z^2} dz$ where C is |z|=2 [5]

OR

Evaluate $\int_0^{2\pi} \frac{d\theta}{\cos \theta + 2}$ by contour integration in complex plane.

- 7. Derive the one dimensional wave equation.
- 8. A rod of length L has its ends A and B maintained at 0° and 100° respectively until steady state prevails. If the changes are made by reducing the temperature of end B to 85° and increasing that of end A to 15°, then find the temperature distribution in the rod at a time t. [10]
- 9. Find the z-transform of (i) e^{-at} sinwt (ii) cos at [5]
- 10. Obtain inverse Z-transform of (i) $\frac{z+2}{(z-2)(z-3)}$, (ii) $\frac{z}{(z-2)(z-1)}$ [5]
- 11. If x(k) = 0 for k < 0 and $Z\{x(k)\} = X(z)$ for k > 0 then prove that $Z\{x(k+n)\} = z^n X(z) z^n \sum_{k=0}^{n-1} \chi(k) z^{-k}$ where n = 0, 1, 2... [5]
- 12. Solve the difference equation x(k+2) 4x(k+1) + 4x(k) = 0 with conditions, x(0) = 0, x(1) = 1
- 13. Find the cosine transform of $f(x) = e^{-mx} m > 0$ show that $\int_0^\infty \frac{\cos pr}{r^2 + R^2} = \frac{\Pi}{2B} e^{-PB}$ [5]
- 14. Find the Fourier transform of $g(x) = \begin{cases} 1 x^2 \\ 0, \end{cases}$ if -1 < x < 1; [5]

if otherwise.

and hence use it to evaluate $\int_0^\infty \left(\frac{x \cos x - \sin x}{x^3}\right) \cos(x/2) dx$

Examination Control Division_

2069 Bhadra

Exam.	" Regular (2066 & Later E	atch)
Level	BE	Full Marks	80
Programme	BEL, BEX. BCT	Pass Murks	32
Year / Part	II / II	Time	3 hrs.

Subject: - Applied Mathematics (SH551)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ <u>All</u> questions carry equal marks.
- Assume suitable data if necessary.
- Determine the analytic function f(z) = u(x,y) + iv(x,y) if $u(x,y) = x^2 y^2$.
- 2. Define complex integral. Evaluate: $\oint (z+1)dz$ where C is the square with vertices at z=0, z = 1, z = 1 + i and z = i.

OR

Find linear fractional transformation mapping of: $-2 \mapsto \infty, 0 \mapsto \frac{1}{2}, 2 \mapsto \frac{3}{4}$.

- 3. a) State Cauchy's integral formula and evaluate the integral 4-3z dz, where C is circle $|z| = \frac{3}{2}$.
 - b) Obtain the Laurent series which represents the function $f(z) = \frac{1}{(1+z^2)(z+2)}$ when |<|z|<2.
- 4. a) Find the Taylor's series expansion of $f(z) = \frac{1}{z^2 + 4}$ about the point z = i.
 - b) Evaluate $\int \tan z \, dz$ where C is a circle |z| = 2 by Cauchy's residue theorem.

Evaluate $\int_0^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta$ by contour integration in the complex plane.

- Find the z-transforms of: (i) $\cos h$ (at) $\sin (bt)$ (ii) n.(n-1); n = k
- Find the inverse z-transforms of: (i) $\frac{Z}{7^2-37+2}$ (ii) $\frac{Z}{(7+1)^2(7-1)}$.
- a) State and prove convolution theorem for z-transform.
 - b) Solve by using z-transform the difference equation x(k+2) + 2x(k+1) + 3x(k) = 0given that x(0) = 0 and x(1) = 2

S. Solve
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
 given that $u = 0$ as $t \to \infty$ as well as $u = 0$ at $x = 0$ and $x = 1$

9. Solve
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, which satisfies the condition $u(0,y) = u(L,y) = u(x,0) = 0$ and $u(x,a) = \sin\left(\frac{n\pi x}{L}\right)$.

OR

The diameter of a semi-circular plate of radius a is kept at 0°C and the temperature at the semi-circular boundary is u₀. Find the steady state temperature in the plate.

10. Find the Fourier integral representation of the function $f(x) = e^{-x}$, $x \ge 0$ with f(-x) = f(x). Hence evaluate $\int_{0}^{\infty} \frac{\cos(sx)}{s^2 + 1} ds$.

11. Find the Fourier transform of:

$$f(x) = 1-x^2, |x|<1$$
= 0, |x|>1 and hence evaluate

$$\int_{0}^{\infty} \left(\frac{x \cos x - \sin x}{x^3} \right) \cos \frac{x}{2} dx.$$

5 TRIBILIVAN UNIMERSITY

INSTITUTE OF ENGINEERING

Examination Control Division

2069 Poush

Exam.	New Back (2066 & Later Batch)		
Lével	BE	Full Marks	
Programme	BEL, BEX, BCT	Pass Marks	32
Year / Part	11/11	Time	3 hrs.

Subject: - Applied Mathematics (SH551)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. If f(z) = u + iv is any analytic function of complex variable z and $u-v = e^{x}(\cos y \sin y)$, find f(z) in terms of z.
- 2. State and prove Cauchy's integral theorem.
- 3. Using Cauchy integral formal to evaluate: $\oint_{c} \frac{zdz}{(z-1)(z-3)}$ where C:/z/ = 3/2.
- 4. Find the Laurent's series expansion of $f(z) = \frac{1 \cos z}{z^3}$, $0 < \frac{z}{< R}$.
- 5. Define singular points and poles. compute the residue of $f(z) = \frac{z^2}{(z-2)(z^2+1)}$ at its pole(s).

OF

Using contour integration to evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \sin \theta}$

- 6. Find the z-transform of the following: (any two)
 - i) $K^2 a^k$ for $K \ge 0$ (ii) $a^k \cos k\pi$ for $k \ge 0$ (iii) $e^{at} \cos k\pi$ for $t \ge 0$.
- 7. State and prove final value theorem for the z-transform.
- 8. Solve the difference equation: $y_{n+2} + 2y_{n+1} + y_n = n$ where $y_0 = y_1 = 0$, and n = k
- 9. A tightly stretched string with fixed end points x = 0 and x = 1 is initially in a position given by $y = y_0 \sin^3\left(\frac{\pi x}{1}\right)$. If it is released from rest from this position, find the displacement y(x, t).
- 10. Change the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in to polar form.
- 11. Define Fourier series in complex form. Verify the convolution theorem for $f(x) = g(x) = e^{-x^2}$.
- 12. Find the Fourier cosine transform of $f(x) = e^{-x}$, x>0 and hence by Parseral's identity, show that $\int_0^\infty \frac{1}{(1+x^2)^2} dx = \frac{\pi}{4}.$

Examination Control Division

2068 Bhadra

Exam.	Regular			
Level	BE	Full Marks	80	
Programme	BEL, BEX, BCT	Pass Marks	32	
Year / Part	II / II	Time	3 hrs	

Subject: - Applied Mathematics

Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt All questions.

- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. a) State necessary conditions for a function f(z) to be analytic. Show that the function $f(z) = \log z$ is analytic everywhere except at the origin.
 - b) Find the linear fractional transformation that maps the points $z_1 = -i$, $z_2 = 0$ and $z_3 = i$ into points $w_1 = -1$, $w_2 = i$, $w_3 = 1$ respectively.
- 2' a) State and prove Cauchy's integral formula.
 - b) Write the statement of Cauchy's integral formula. Use it to evaluate the integral $\oint_{c} \frac{e^{z}}{(z-1)(z-3)} dz$ where C is the circle |z| = 2.
- 3. a) Write the statement of Taylor's theorem. Find the Laurent series for the function $f(z) = \frac{1}{z^2 3z + 2}$ in the region 1 < |z| < 2.
- 1: b) State Cauchy-residue theorem. Using it evaluate $\int_{0}^{\infty} \frac{\sin z}{z^6} dz$ where C: |z| = 1.

OR

Evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta} d\theta$ by contour integration in the complex plane.

- 4. a) Show that the Z-transform of $\cos k\theta$ is $\frac{z(z-\cos\theta)}{z^2-2z\cos\theta+1}$. Use this result to find Z-transform of $a^k \cos k\theta$.
 - b) Obtain the inverse Z-transform of $\frac{2z^3+z}{(z-2)^2(z-1)}$, using partial fraction method.
- 5. a) Solve the difference equation x(k + 2) x(k + 1) + 0.25x(k) = u(k) where x(0) = 1 and x(1) = 2 and u(k) is unit step function.
 - b) State and prove shifting theorem of z-transform.
- 6. Derive one-dimensional wave equation governing transverse vibration of string and solve it completely.

- 7. Solve the one dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the conditions:
 - a) u is not infinite as $t \to \infty$
 - b) $\frac{\partial u}{\partial x} = 0$ for x = 0 and x = l and
 - c) $u(x,0) = lx x^2$ for t = 0 between x = 0 and x = l

OR

The diameter of a semi circular plate of radius a is kept at 0°C and temperature at the semi circular boundary is T°C. Show that the steady temperature in the plate is given

by
$$u(r, \theta) \frac{4T}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \left(\frac{r}{a}\right)^{2n-1} \sin(2n-1)\theta$$

8. a), Find the Fourier cosine integral representation of the function $f(x) = e^{-kx} (x > 0, k > 0)$ and hence show that

$$\int_{-\infty}^{\infty} \frac{\cos \omega x}{k^2 + \omega^2} d\omega = \frac{\pi}{2k} e^{-kx} \quad (x > 0, K > 0)$$

b) Obtain Fourier sine transform of e^{-x} , (x > 0) and hence evaluate $\int_{0}^{\infty} \frac{x^2}{(1+x^2)^2} dx$.

INSTITUTE OF ENGINEERING	Level	New Hack	1.066 & Later	Hatch)
Examination Control Division	Programme	BEL, BEX.	Pass Marks	
3068 Magh	Year / Pari	BCT 11/11	Time	1 hrs
Subject - Ap	valled Mathe	response in the second	errore en errore en	and the second s
	After a service of the second	a en la classes estas e la conferencia de la conferencia del la conferencia de la conferencia del la conferencia del la conferencia de la conferencia de la conferencia de la conferencia del la confe	garantario e makazimi olehini oleh	or care of
Candidates are required to give their ans Attempt All questions. The figures in the margin indicate Full I Assume suitable data if necessary.		wn words as fa	r as practicable	
1. a) Define harmonic function and show	that the function	on $u = \frac{1}{2} \log(x)$	$(x^2 + y^2)$ is harm	nonic
and hence determine its harmonic cor	njugate function	1.		[5]
 b) Define conformal mapping. Find the points 2i, -2, -2i onto three given points 	linear fraction nts -2, -2 i, 2.	al transformat	ion that maps	
2. a) State and prove Cauchy integral theor	em.			[5]
b) Evaluate the following integral using	Cauchy integra	al formula \int_{z_i}	$\frac{4-3z}{(z-1)(z-2)} \le$	
c is the circle $ z = 3/2$.				[5]
3. a) Find the Taylor's series expansion of	$f(z) = \frac{2z^3 + 1}{z^2 + z}$	about the point	z = 1.	[5]
b) Determine the poles and the residue at	each pole of th	e function f(z	$= \frac{z^2}{(z-1)^2(z+1)^2}$	(5)
	OR .			
Fivaluate $\int_{0}^{2\pi} \frac{d\theta}{\sqrt{2 - \cos \theta}} dy \sin \theta$	tour integration	in complex p	mile	
4. a) Find the z-transform of: (any two)				[5]
i) a ^{jk} ii) sinak	iii) cosha	sinbt		
b) Find inverse z- transform of $\frac{z-4}{(z-1)(z-2)}$	$\frac{1}{(2)^2}$ by using in	version integr	al method.	[5]
5. a) State and prove final value theorem for z	transform.			[5]
b) Solve by using z transform $y_{k+2} - 4y_{k+1} +$	$4y_k = 0$ where	$y_0 = 1$ and y_1	=0.	[5]
6. A tightly stretched string with fixed end poi				
given by $y = y_0 \sin^3 \frac{\pi x}{L}$. If $y(0, t) = y(L, t)$				
initial velocity is zero.				[10]
7. Deduce the two dimensional Laplace equation	n into polar for	m.		[10]
OR				
Derive one dimensional heat equation for conduction and solve it completely.	or the flow of	heat along a	metallic rod	by
8. a) State and prove convolution theorem for F	ourier transfor	m,		[5]
b) Find the Fourier cosine transform of $f(x)$ $\int_{-\infty}^{\infty} \cos py dx = \int_{-\infty}^{\infty} \cos px dx$	$(c) = e^{-mx} (r)$	n > 0) and h	ence show th	Mi
$\int_0^\infty \frac{\cos \rho \gamma}{\gamma^2 + \beta^2} d\gamma = \frac{\pi}{2\beta} e^{-\rho\beta} \ (\beta > 0, \ \rho > 0).$				(A)